Tumor and Stem Cell Biology Androgen-Induced TMPRSS2 Activates Matriptase and Promotes Extracellular Matrix Degradation, Prostate Cancer Cell Invasion, Tumor Growth, and Metastasis
نویسندگان
چکیده
Dysregulation of androgen signaling and pericellular proteolysis is necessary for prostate cancer progression, but the links between them are still obscure. In this study, we show how the membrane-anchored serine protease TMPRSS2 stimulates a proteolytic cascade that mediates androgen-induced prostate cancer cell invasion, tumor growth, and metastasis. We found that matriptase serves as a substrate for TMPRSS2 in mediating this proinvasive action of androgens in prostate cancer. Further, we determined that higher levels of TMPRSS2 expression correlate with higher levels of matriptase activation in prostate cancer tissues. Lastly, we found that the ability of TMPRSS2 to promote prostate cancer tumor growth and metastasis was associated with increased matriptase activation and enhanced degradation of extracellular matrix nidogen-1 and laminin b1 in tumor xenografts. In summary, our results establish that TMPRSS2 promotes the growth, invasion, and metastasis of prostate cancer cells via matriptase activation and extracellular matrix disruption, with implications to target these two proteases as a strategy to treat prostate cancer. Cancer Res; 75(14);
منابع مشابه
Androgen-Induced TMPRSS2 Activates Matriptase and Promotes Extracellular Matrix Degradation, Prostate Cancer Cell Invasion, Tumor Growth, and Metastasis.
Dysregulation of androgen signaling and pericellular proteolysis is necessary for prostate cancer progression, but the links between them are still obscure. In this study, we show how the membrane-anchored serine protease TMPRSS2 stimulates a proteolytic cascade that mediates androgen-induced prostate cancer cell invasion, tumor growth, and metastasis. We found that matriptase serves as a subst...
متن کاملCurcumin-targeting pericellular serine protease matriptase role in suppression of prostate cancer cell invasion, tumor growth, and metastasis.
Curcumin has been shown to possess potent chemopreventive and antitumor effects on prostate cancer. However, the molecular mechanism involved in curcumin's ability to suppress prostate cancer cell invasion, tumor growth, and metastasis is not yet well understood. In this study, we have shown that curcumin can suppress epidermal growth factor (EGF)- stimulated and heregulin-stimulated PC-3 cell ...
متن کاملThe androgen-regulated protease TMPRSS2 activates a proteolytic cascade involving components of the tumor microenvironment and promotes prostate cancer metastasis.
UNLABELLED TMPRSS2 is an androgen-regulated cell-surface serine protease expressed predominantly in prostate epithelium. TMPRSS2 is expressed highly in localized high-grade prostate cancers and in the majority of human prostate cancer metastases. Through the generation of mouse models with a targeted deletion of Tmprss2, we demonstrate that the activity of this protease regulates cancer cell in...
متن کاملSupernatant Metabolites from Halophilic Archaea to Reduce Tumorigenesis in Prostate Cancer In-vitro and In-vivo
Halophilic archaea are known as the novel producers of natural products and their supernatant metabolites could have cytotoxic effects on cancer cells. In the present study, we screened the anticancer potential of supernatant metabolites from eight native haloarchaeal strains obtained from a culture collection in Iran. Five human cancer cell lines including breast, lung, prostate and also human...
متن کاملSupernatant Metabolites from Halophilic Archaea to Reduce Tumorigenesis in Prostate Cancer In-vitro and In-vivo
Halophilic archaea are known as the novel producers of natural products and their supernatant metabolites could have cytotoxic effects on cancer cells. In the present study, we screened the anticancer potential of supernatant metabolites from eight native haloarchaeal strains obtained from a culture collection in Iran. Five human cancer cell lines including breast, lung, prostate and also human...
متن کامل